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1 The Problem

1.1 Overview

The Unfolding Problem can be succinctly described as “How to peel an or-
ange... no matter what shape the orange is.” It is the question of how to
‘unwrap’ a 3D polyhedron, breaking some of its edges or faces so that it can
be unfolded into a flat net in the 2D plane. From there the flattened net of
faces might be printed out, cut from paper or steel and folded to recreate the
virtual model in the real world.

In 1525 the artist Albrecht Dürer used the term ‘net’ to describe a set of poly-
gons linked together edge-to-edge to form the planar unfoldings of some of the
platonic solids and their truncations. Dürer used these unfoldings to teach as-
piring artists how to construct elemental forms, but today the applications for
solutions to the unfolding problem lie in a broad range of fields, from indus-
trial manufacturing and rapid prototyping to sculpture and aeronautics. In the
textiles industry, work has already begun in computing digital representations
of fabric and trying to flatten those representations to optimize seam and dart
placement [MHC05]. There has been similar work in the fields of paper-folding
[MS04] and origami [BM04] and even ship and sail manufacturing. Advances
in robotics and folding automation [GBKK98] have brought with them a new
need for faster, more robust unfolding methods.

If a polyhedron can generate a net which is not self-intersecting, solely by
breaking a subset of its edges and flattening the join angles of those which re-
main, then it is called edge-unfoldable or developable. At present, it is strongly
believed–but not yet proven–that all convex surfaces are developable. In coun-
terpoint, examples are easily found of non-convex surfaces which are cannot
be edge-unfolded, but no robust solution yet exists for testing whether or not
a given mesh will prove to be developable.
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1.2 The Goal

This project asks the question,

Given a polyhedral mesh M, can M be cut along its edges and unfolded flat
into a single nonoverlapping piece?
• How quickly can the question be answered?
• How quickly can an unfolding be found?
• What does it mean to do the job ‘well’?

Earlier this year, I devised brute-force approaches which will always find the
unfolding of any mesh, if such an unfolding exists; unfortunately their running
time is exponential in the number of faces on the polyhedron, and a simple
mesh of twenty faces can take longer than three months to solve on a state-of-
the-art PC. When I first began this research, my goal was simply to find an
unfolding for an arbitrary mesh; having succeeded at this already, in a manner
which is functionally useless because of its running time, my goal is now to
solve the problem again, this time in sub-exponential time.

I would also like to investigate what it might mean to find the ‘best’ unfolding,
to do the job ‘well’. Most applications will impose limitations on the form that
an unfolding can take. Some might need to minimize the length of the border of
the unfolded net (for instance, in ship hull manufacturing, where the goal is to
minimize welded seals 1 ) while others would seek to minimize the area of the
bounding rectangle (steel stamping) or favor long, linear unfolded patterns
(woodworking). These constraints add an interesting twist to the problem,
imposing new minima requirements on the process.

This project is concerned only with geometry which cannot be modified in
any manner before unfolding, and which must be unfolded across its edges
to a single connected net of faces. It seems to me that in the real world, any
application that had reduced its data to polygons probably did so for a reason;
best to preserve them. Limited solutions already exist for cases which relax
these restrictions [AAOS93].

1 Seals are protected under the Arctic Wildlife Treaty. This project does not advo-
cate welding them.
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2 What has come before

2.1 Existing research

The 1990’s saw a surge of research on the unfoldings of convex polyhedra.
O’Rourke et al [AAOS93] described the star unfolding, which could unfold
any convex polytope by cutting across its faces. Namiki and Fukuda sparked
further interest in the field with a Mathematica plugin [NF94] capable of
unfolding convex surfaces, and today several pieces of commercial software
offer convex unfolding solutions [SS][T3D].

Unfolding solutions break down into three broad classes [O02]:

(1) general unfoldings which split the faces of the surface;
(2) edge unfoldings which split only the edges of the surface;
(3) recently vertex unfoldings, which split edges and retain only connectivity

at vertices to create long chains of vertex-linked triangles.

Of these three general unfoldings have been shown to be most powerful [BDEKMS99].

Solutions exist which will unfold a mesh into many separated components.
Costly iterative loops can then be applied to re-join the disparate pieces, but
the running time of the rejoining processes are invariably poor. An open task
remains to be able to determine, for a given undevelopable mesh, the lower
bound on its number of flattended components. Clearly, the unfolding problem
cannot be solved without such a lower bound; without the constraint that
separated pieces be limited, the worst- case limit of an unfolding of a mesh of
n faces would be n disjoint polygons in a plane. Not a sufficient solution.

To date, it has been shown that all convex surfaces may be unfolded through
the star unfolding and that this method generates an infinite number of un-
foldings [AAOS93]. (The star unfolding is a “general” unfolding.) It has also
been demonstrated that even relatively simple non-convex surfaces can not
always be edge-unfolded[BDEK99], [BDEKMS99]. Examples have been gen-
erated of non-convex surfaces which are unfoldable if closed but which can be
rendered undevelopable through the removal of a single polygon [BDEK99].
Several simple algorithms have been advanced for the reasonably quick edge-
unfolding of a convex surface, but it appears that no single approach yet
devised is guaranteed to be effective on all surfaces [F97].

Relatively little research has been published dealing with analytical approaches
to finding the unfoldings of non-convex surfaces. O’Rourke summarizes the
current research nicely in [O02].

3



2.2 What I had done before Cambridge

I first became interested in the unfolding problem in 1995 and began to in-
vestigate it seriously on my own time in late 2003. By the time I entered
Cambridge in the fall of 2004, I had built a test harness which could load 3D
models and try to unfold them. The YAMM project, (which stands for ”Yet
Another Metaball Modeler”–I liked the surfaces that implicit surface model-
ing could give me, because they were so well-behaved) was written in OpenGL
and C++. My models were free to be non-convex and non-simplicial. To these
models I could apply a suite of Unfolders, a set of algorithms implemented in
the YAMM framework to do their level best to unfold a developed net.

I decided early on to focus on the edge-unfoldings of non-convex polyhedra.
Any solution I could devise for the more difficult cases would trivially solve
the simpler questions.

I had asked the questions,

• Can the geometric or topological attribute that makes a non-convex surface
undevelopable be determined programmatically?

• Is it possible to determine whether or not an edge-unfolding can exist for a
given non-convex surface without actually attempting to find it?

• If a surface cannot be edge-unfolded, can an algorithm be designed to gen-
erate only the minimum number of separated unfoldable components?

• What other constraints can be applied to the unfolding?
• What are the concrete applications for this line of research?

My first unfolders were uniformly heuristic in nature. Each unfolder treated
the source mesh purely as a connectivity graph irrespective of geometry and at-
tempted to find an unfolding through different orderings of its traversal of the
graph. The simplest were breadth-first and depth-first traversals: choose a seed
polygon arbitrarily (usually the bottom-most face of the mesh, for aesthetic
reasons) and then unfold outwards from that face’s node in the connectivity
graph, ordering the nodes with a breadth- or depth-first search, declaring fail-
ure the first time an overlap was generated. Then I tried spiraling through the
model, looking at the local geometry just enough to find the next polygon to
lay down in a growing spiral pattern, which produced aesthetically pleasant
(but not terribly effective) results. These solutions, which I named the BFS
(Breadth First Search), DFS (Depth First Search), and Spiral Unfolders, would
often work well on convex models but it was blind luck for them to succeed
on non-convex meshes.

In addition to the basic heuristic approaches, I also dabbled with a few con-
strained solutions. I designed unfolders which attempted to minimize the area
of the convex hull of the unfolding net; the cross-section of the net; the length

4



of the longest gore in the net; or the greatest distance from the initial seed
face. These side trips were interesting and thought-provoking, but did not in
general bring me closer to an actual solution. Generally they used variants
of the BFS and would project one move ahead, selecting the next move that
minimized the chosen function; since such a stepwise minimization approach
is known not to always generate the actual minimal value, I know that their
results did not always achieve the minimizing goals even when the unfoldings
themselves succeeded.

One of the discoveries that I had already made by 2004 was that the problem
itself was actually two different issues layered one atop the other. What I had
initially assumed would be purely a question of topology turned out instead to
be twin issues of geometry and local behavior. I found that the overall shape
of a model seemed to be far less important than local points of extreme behav-
ior; creases, boundaries and saddlepoints all seemed to be far more relevant
to success or failure than whether the surface as a whole was topologically
equivalent to (for example) a sphere or a torus. In fact, at first glance I was
becoming convinced that surface genus was actually irrelevant to the problem.
I also believed that mesh density was consistently a real factor in success or
failure; certain minutiae, per-vertex behaviors on a face-by-face basis, could
determine the success or failure of an entire unfolding. Unfortunately I had
had no luck whatsoever in avoiding these special cases; at best I had produced
a few heuristics which tended to avoid them.

Based on this, I had concluded that the unfolding problem was really two
problems in one: what I thought of as the “micro” problem, avoiding per-face
collisions on adjacent gores; and the “macro” problem, issues that arose from
the overall geometry of the surface.

My early work had very few deterministic, reproducible testing metrics. My
test harness was designed to let me try one after another of various unfolding
approaches until one worked. My primary metric of success was just that: a
binary true or false of “did it work on the given model”. Unfortunately, almost
all the models that I had were either complete successes or complete failures
across the board; only a few of the cases distinguished between the unfolders.
Trivial perturbations would often upset that balance, indicating that it had
simply been the luck of an ordered generating function that made those shapes
so well-behaved.

One model that I did find to be quite useful was a sphere generated from an
implicit surface. The sphere was amiably ill-behaved: it had no border and
was uniformly convex, but by generating the model with an octree reduction
method I had a model whose faces varied wildly in size and angle, not randomly
but almost so. This variability proved to be a surprisingly good test for would-
be solutions to the “micro” portion of the problem.
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3 New Findings 2004-2005

Over the past year, I have attempted to refine my understanding of the Un-
folding Problem and to begin to solve it. My approaches have grown from the
mindlessly heuristic to the completely mindless, but thence to more geometrically-
sensitive tacks; I have begun to identify the numerical bounds on the problem
and to find upper and lower bounds to possible solutions. Perhaps most im-
portantly, I can now show that the problem is, without a doubt, difficult.

I have refined my definitions of the key players in my little drama. I have
formally defined a polyhedron as the connected union of a set of intersections
of open half-planes in <d such that no intersection lies in a proper affine sub-
space of <d

2 , and a mesh as the surface of a polyhedron, expressed as a union
of faces, edges and vertices 3 . These definitions allow me to cleanly distin-
guish between the mathematical abstraction of a surface, its geometric (and
analyzable) expression in mathematics, and its implementation 4 in software.

I have identified the data structures which appear consistently throughout my
work and can name and discuss each graph. The source connectivity graph
allows me to model initial structure; the cut-tree graph models final output.
The manner in which these data structures are traversed determines the run-
ning time and complexity of any attempt to solve the Unfolding Problem. In
fact, they provide an alternate approach to defining the problem: one could
readily say that the Unfolding Problem is the task of finding, in minimal time,
the cut-tree of a mesh.

I have made two major additions to my testbed this year, each of which de-
pended on and extended my understanding of the data structures that lurked
behind the scenes.

Early in the year I designed three brute-force unfolders, systems which would
in one manner or another attempt to evaluate every possible unfolding that
a mesh could achieve. These unfolders would iterate across every possible
net until they found one with a valid unfolding tree (non-looping, non-self-
intersecting.) Unfortunately, the number of possible nets for a model with d
edges and n faces is O(dn) 5 . The brute-force unfolders were clearly suboptimal
solutions to the problem.

Today I brush off those early, mindless avenues as though they bore no fruit,

2 See Definitions for a more verbose formulation of this description
3 See Definitions for the rules guiding a Mesh
4 See Implementation for the full set of rules, relaxations and extensions defining
the behavior of a PolyMesh
5 See Factoids for proof.
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but that wasn’t really true. The brute-force approaches lead me to a number
of new insights into the problem and highlighted many optimisations which
worked for any approach, such as optimising for seed face and not focusing
on ordering. The ‘mindless’ tacks also highlighted the true scale of the prob-
lem and allowed me, for the first time, to describe the upper bounds of the
unfolding problem formulaically.

Brute force had failed me. Undaunted, I faced adversity by making the problem
even worse: I asked the question, “Now that I know how many nets a given
mesh could possibly generate, how many ways are there to actually construct
any one of those nets?” Mindful of the complexity of the problem, I chose
to trace my way through the possible nets and their possible assemblies by
constructing a tree of all options. I hoped to build a data structure which
encapsulated all options without redundantly storing faces that were shared by
multiple nets. To this end I devised the MegaTree, a partially-directed graph
of options, which drives my Total Unfolder algorithm. One path through the
MegaTree equals a single unfolding, valid or otherwise. The running time of
the Total Unfolder for a model with d edges and n faces is

F (n) ∼ O((dk)((k − 1)!)), wherek = (nd− 1)/(2d− 2) (1)

From the Total Unfolder I moved on to write two more brute-force approaches.
The Precomputed and Iterative Unfolders were both significant improvements,
running in O(dn) time; the Precomputed Unfolder actually runs a bit faster.
The Iterative Unfolder gave rise to a very interesting insight, the precise import
of which I have as yet been unable to determine, but still, interesting:

Given an ordering of the faces and vertices of a mesh, one can uniquely
identify an unfolding net with a numerical index. This numerical value is
formed by using the index of each face as an order index into a base-d
number with n digits. The value of the ith digit of the number is the index
of the edge across which the ith face was unfolded.

This implies that one could compress the expression of an unfolding down to
an integer of at most n * ceil(log2(d)) bits.

Having gone as far as I felt reasonable with the brute-force unfolders, I moved
on to a new tack: curvature-sensitive unfolding. The Curvature Ordering Un-
folder is a geometrically-aware heuristic unfolder. Every face is assigned an
“average curvature 6 ”, the average of the curvatures of the vertices of the

6 After extensive reading on the matter, I’ve settled on using the angle deficit as
an approximation to the discrete curvature of a surface at a vertex. The angle
deficit is the number of radians by which the sum of the angles of each neighboring
face at the vertex approaches 2pi; positive angle deficit implies a rounded curve,
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face. The face with the highest curvature is then chosen as the root of the net
and all subsequent unfolding flows from there. At every pass, the next face to
unfold is chosen from the boundary set of the current unfolding selecting the
face with the next greatest curvature. This leads to an unfolding tree whose
branches and leaves decrease in curvature steadily as they get further from the
original root, with the most negative of leaves at (hopefully) the extremities.

In practice the Curvature Ordering Unfolder was a good step forward but not
the end of the road. It assumes that the most negative areas of curvature
are as far as possible from the most positive, and that splitting them will
give the necessary room in the 2D plane for the unfolding not to overlap.
The current implementation addresses only maximal critical points in the
curvature field, but should take minima and saddle points into account. There
is currently no attempt at handling local perturbation, so while it does well
on mathematically-generated surfaces, real-world models remain problematic.

I’ve noticed that in many of the more regular models, especially those gener-
ated from parametric functions, there are often strips or patches of faces with
identical (within the limits of floating-point tolerance) curvature. I’ve also no-
ticed that the COU selects the next face in an unfolding from what can be a
pool of faces with identical curvature; the selection is made based on order of
addition to the pool, which means that the choice of face is effectively an arti-
fact of the generation algorithm, a side-effect of data entry. This could easily
lead to artifacts in the unfolded output, which inspired the Tracing Curvature
Unfolder. The TCOU overrides the COU’s next-face selection routine: when
there is more than one candidate face to be laid down and all of the possible
faces have identical, maximal curvature, the TCOU selects the face which is
closest to directly along the vector perpendicular to the gradient of the flow of
curvature from the last face which was added to the unfolding. This imparts
a sort of ‘velocity’ to the unfolding, but it also guarantees that the selection
method is much less an artifact of the heuristic implementation and much
more determined by the actual geometry.

One side route that I took with the Curvature Ordering Unfolder was to
build the Multipart Curvature Ordering Unfolder. 7 The original Curvature
Orderer was based on starting from a single seed point, but that was clearly

zero deficit implies a flat plane, and negative deficit implies a saddlepoint or other
locally-non-convex geometry.
The angle deficit method of calculating discrete curvature at a vertex is extremely
simple to implement, but not as comprehensive as other methods which have been
proposed. For instance, the angle deficit at every point on a ball of crumpled paper
would be zero, but obviously the curvature of the paper is not zero.
In my implementation, vertices on the boundaries of the surface are arbitrarily
assigned an angle deficit of -2pi.
7 I suspect that I undertook this task just to see how long the name could get.
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not a reasonable goal; many models have many extrema or extremal regions.
So the Multipart modification was to support a series of ‘seed’ faces, faces far
apart on the model which would all become the germinal centers of unfoldings
growing in parallel; when they met they would bond across a shared face. The
implementation still has a few bugs to work out, and I do not yet have any
performance measures.

To assist my research I have built the beginnings of a library of test cases,
models which in one manner or another are difficult to unfold. My favorite so
far has been the cow (cow.wrl), a VRML file I found online which combines
broad expanses of gentle positive curvature with tight areas of highly positive
or negative curvature. The cow is not actually a perfect test case, because
its feet and legs make it a little vulnerable to algorithms that benefit unduly
from long linear runs, but it’s still an effective (and amusing) test. I’ve found
that the number of faces that an unfolder can lay down out of the 5,370
triangles that make up the cow’s simplicial mesh can be an effective index of
the method’s effectiveness:

Unfolding Method Time (P-III 750) Num faces Percent of Cow

BFS Unfolder 1m:36s 3509 65.34

DFS Unfolder 1m:36s 4012 74.71

Spiral 2m:16s 3607 67.17

Curvature Ordering 8m:11s 4681 87.17

Curvature Tracer 8m:36s 4691 87.36

In addition to the cow I also test on a set of parametric surfaces, bounded
functions from parametric space (u,v) to 3D space (x,y,z):

• Sphere: This surface of universally positive curvature should be unfoldable
to every approach.

• Valley: y = u2 + v2. This surface of universally positive curvature should
be unfoldable to every approach.

• Saddlepoint - y = u * v. This surface of universally negative curvature
cannot be unfolded.

• Torus: The torus induces loops in the cut-tree, unlike most convex surfaces.
Many of the mindless heuristics fail here.

• Inner Half-Torus - The inner half of a torus’ ring, this uniformly negative
surface does not appear to be unfoldable.

• Spun parabola: The surface of rotation r = y2 spun about the Y axis. Despite
the fact that its curvature is negative throughout, the spun parabola is
actually unfoldable–but only by a spiral line tracing almost-horizontal loops
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around the Y axis.
• ...and various other entertaining models.

An interesting mirror to the timing tests is to count the number of possible
solutions to an unfolding for a given model. I’ve modified a few of the unfolders
not to stop after success; the Total Unfolders can be run so as to count the
total possible number of ways to generate all of the possible unfoldings for a
mesh, beginning from a fixed seed face. Obviously, the exponential increase in
time to find an unfolding means that I’ve been unable to apply this method to
any but the simplest shapes, but I was intrigued to learn that there are 3,968
different orders in which one can unfold five of the faces of a cube about the
sixth.

Before my arrival at Cambridge, I was convinced that the unfolding problem
was a two-part thorn: micro and macro. I have made some small progress
in resolving the micro problem, using a hash map in my implementation to
steer clear of troublesome edges. In the past year I have begun to suspect that
there is a third layer to the question, “topo”, and that a successful solution
will need to address all three layers of the question in parallel. In fact, it is
distinctly possible that some meshes exist which could be unfolded were it
not for failing some critical criteria in one of these three fields. Where the
micro issue lay at the vertex and face level and the macro lay in the angles
and lengths of groups of faces, the topo problems I’ve begun to detect seem
to derive from the twisted interconnections of more complex models. I suspect
that by using topological knowledge to identify macro portions of the model
and then reducing the problem to segments and their interactions, I might be
able to gain new traction on the problem.

I’ve begun to find limited answers to the question of “can a surface be ana-
lyzed without unfolding it?”. Any surface of uniformly positive curvature is
unfoldable, but this is not news; Fukuda had already shown it with [F97]. But
I have found no research into surfaces of uniformly negative curvature, nor into
surface regions of negative curvature entirely surrounded by positive regions.
I believe that identifying these classes of surface could allow me to identify
their unfoldability early on. The spun parabola, the only uniformly-negative
surface that I have found that I could unfold, is topologically cylindrical, but
so is the inner torus model–which is NOT unfoldable. Clearly, more work is
needed here.

A few other random facts 8 that I’ve reasoned out this year include:

• Removing edges reduces unfoldability
• The genus of the source shape is not tied precisely to the genus of the

cut-tree

8 As elaborated upon in the Factoids appendix
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• The necessity of cutting vertices with negative curvature
• Ordering doesn’t really matter
• Starting face doesn’t matter
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4 Where to go from here

In the next two years, I will continue to wrestle with the unfolding problem. I
can organize the work ahead of me into two broad categories: new approaches
which call for investigation and the underlying questions which drive those
approaches. A very rough estimate of how long it might take me to examine
the points below, based on my performance to date, leads me to suspect that
to address every concept below should take me about two and a half years.
Hopefully past performance is not indicative of future results; I would like
to lay these questions to rest in at most the next year to a year and a half,
especially because I want to move on to the more interesting issues that I am
sure will arise while investigating those discussed here.

In general, my methodology has been to brainstorm new approaches; do a
literature search to see whether they’ve been tried before; extend the search to
techniques of implementation; and then if they still seems to bear examination,
write a testbed unfolder to examine the techniques in action. I then catalogue
each approach in an evolving document listing all of my attempts and move
on to the next. Often, I devise new variations on an approach in the course of
implementing it, which I then test in turn.

4.1 New approaches to try

The Curvature Ordering Unfolder sorts faces in favor of greatest curvature.
I’d like to try sorting by greatest distance from areas of negative curvature
instead. If I do, I’ll have two tacks to try out: measuring distance by the length
of the shortest path between the face and the regions of negative curvature, or
measuring distance by the number of edges crossed along that shortest path.
While the former might seem to be the more intuitive, the latter addresses
the real concern: that the distance is a first-pass approximation to the number
of faces which can be laid down between this polygon and those of negative
curvature. So I’ll want to try both concepts of ‘distance’ and see what I get
from each.

One update that I do want to make to my system is my curvature imple-
mentation. The angle deficit description of curvature is really insufficient for
my needs. Meyer and Desbrun give a more evolved form of the angle deficit
calculations in [MDSB03], but I’m tempted to try Polthier and Hildebrandt’s
method [HP04] or Lyuba Alboul’s approach [A02] if I can calculate them rea-
sonably quickly for local surface features.

I also intend to refine my concept of a ”shortest path”. Instead of just a
geometric or edge-counting weight, I could use these weights in conjunction
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with a function which maximizes curvature along a path–solve for the shortest
path on a surface where the weight of each step in the path is a function not
only of distance but of curvature. The resulting path will not be physically
the shortest but it would cross the greatest amount of positive curvature.

As an entirely new approach, I’d like to try segmenting the surface into regions
and then trying to work with each region separately. I have a number of
different ideas on how to segment the source surface:

• Using discrete curvature, separate regions of positive curvature from regions
of negative curvature. I could then discard the former immediately, knowing
already that they are unfoldable 9 .

• Using discrete curvature or, perhaps, through patch-fitting, identify gradi-
ents in the curvature flow upon the surface. Unfold along these lines.

• Trace the shortest paths between points of maximal curvature. Use these
paths of faces as initial unfoldings joining multiple seed points, then work
outwards from the seed points.

• Trace the shortest paths, but instead of linking points of maximal curvature,
link those points furthest from regions of negative curvature.

Another version of a reduce-unfold-expand approach would be to reduce the
model itself to its topological minimum (ie., merging polygons and collapsing
vertices to reduce the mesh to the smallest set of polygons such that the
removal of one more face would alter the topology of the surface [HA03].) If
the last surviving facets in such a reduction retain some subset of the original
edges, then I should be able to treat each facet as enclosing a limited region
to unfold. I can foresee problems with this approach–the reduction will lose
local non-topological features, such as warps in the surface, which are relevant
at the “macro” level–but it could still offer me interesting insight. A similar
approach is taken in Mitani and Suzuki’s paper on reducing a model to strips
to simplify unfolding [MS04].

One side track I’d like to look into some day, especially as I begin to isolate
regions of the surface and work with the regions independently, is where I
could benefit from parallel processing. It seems to me that the Multipart
Unfolder, with its many seeds all unfolding at once, is a natural candidate
for a parallelized implementation. But could this be done in a manner which
would significantly improve performance?

Beyond working with each region separately, I would like to look into express-
ing in some clear manner the relationships between regions. Consider the inner
torus model, merged at its base onto a sphere. How might I express, and react

9 Is this always true? Or can I construct a model where two adjacent regions of
positive curvature are positioned in such a way that they prevent each other from
unfolding?
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to, this negative region ‘surrounded’ by a positive one, which is large enough
to unfold the negative? In fact, any closed surface at all at the base of the
inner torus would be enough to make it solvable. Can I express this interrela-
tionship of regions of the surface in such a way that I could determine a priori
whether a region could ever be unfolded?

4.2 Open questions

Some, but not all, non-convex surfaces can be edge-unfolded. Can the geomet-
ric or topological attribute that makes a non-convex surface undevelopable be
determined programmatically? Is it possible to determine whether or not an
edge-unfolding can exist for a given non-convex surface without actually at-
tempting to find it? Can one design a robust algorithm which can find an
edge-unfolding for any surface (if that unfolding exists) and do so in less time
than would be required by brute force? If a surface is not developable, can one
find the minimium number of components into which it must be split?

If a surface cannot be edge-unfolded, can an algorithm be designed to generate
only the minimum number of separated unfoldable components? Solutions ex-
ist for broadly detecting features, usually by analyzing lines of sudden changes
in curvature. What is the correlation between features and unfoldability of
patches?

Beyond preserving the critical subset of connectivity and preventing interpen-
etration of flattened polygons, what other constraints can be applied to the
unfolding?

In my twin test cases of the inner torus vs. the spun parabola–when does it
all go wrong? At what point does the torus lose what the parabola has, and
what is it that is lost?

How should I handle vertices with non-zero curvature but with zero angle
deficit?

Unfolding a mesh of infinitely-small faces would really be a general unfolding,
as though one were willing to cut faces. What is the relationship between gran-
ularity of faces, edge lengths, incidence angles at vertices and angle deficits?
How do these factors play out in a mesh’s unfoldability?

Thinking about the inner half-torus model, I see that it boils down to one of
two problems: one must either split the rings at the top or bottom, or somehow
fit all of the intervening geometry into the plane inside the ring. Can I express
the latter in the form of some sort of ‘area deficit’, akin to the angle deficit
metric, where the sum of the areas of the faces linked to the inside of a closed
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ring must not exceed the area of the plane in the ring? Perhaps, the sum of the
areas of the faces, multiplied by the sign of their curvature? This expression
needs further work but I think it could dramatically help to identify meshes
which cannot unfolded.

The cut-tree of a sphere has no loops; the cut-tree of a torus has two loops;
the cut-tree of the top half of a torus, closed across the bottom, can have one
or two loops. What is the relationship between genus of the surface and genus
of the cut-tree?

The Multipart Curvature Unfolder uses a multi-seed scheme that should trans-
late well into other unfolders. Would it work anywhere? Does it solve the geo-
metric (“macro”) question, leaving only the topo to be addressed? If so, what
is its running time? Is it at all reasonable, or have I just traded one impos-
sible problem for another? (Although, if I have, perhaps the new impossible
problem would be one that other researchers have already addressed?)

What new metrics can I find to describe a surface, what new numerical analy-
ses of geometry and topology? What means exist beyond simple curvature for
describing the behavior of a discrete surface?

And lastly, what haven’t I even begun to think of?
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A Terminology

A.0.1 The abstract mathematical entities

A convex polyhedron Mc of dimension d is the intersection of a set of open
half-spaces in <d such that Mc does not lie in a proper affine subspace of
<d. The surface of such a union is the set of all points which are the limits
of convergent sequences of points within the open half-spaces, yet not in the
half- spaces themselves. Convex polyhedra have the interesting attribute that
their surface is exactly their convex hull.

A polyhedron M of dimension d 10 is the union of a set of convex polyhedra
Mc, a connected union such that there exists a path between any two points
in the polyhedron which lies entirely within the union.

A great deal of the existing research has focused on the unfolding of closed,
polyhedra. A polyhedron is described as closed if the surface is without bound-
ary. It is an open question at this time whether solving the unfolding problem
will require that polyhedra be closed. Hopefully such a requirement will prove
to be overly strong and unnecessary. Examples exist of both un-unfoldable
closed surfaces and easily unfoldable open surfaces.

A.0.2 The concrete geometric primitives

A mesh describes the discrete representation of the surface of a polyhedron.
Meshes are <2 manifolds in <3. A mesh is a set of faces 11 , planar regions
bounded by edges linking vertices.

• Meshes are bounded. Any mesh may be enclosed within a sufficiently-large
finite convex hull

• The set of faces defining a mesh must form a single connected set
• Faces must be planar
• No more than two faces may share an edge
• Faces may only meet at edges
• No more than two edges of a single face may meet at any point.

10 In the literature, the term polytope is sometimes used instead of ‘polyhedron’. In
3D graphics the two terms are more-or-less identical, although some researchers use
the two words to distinguish the abstract mathematical forms (as polytopes) from
their concrete counterparts (as polyhedra).
11 The term ‘face’ or ‘facet’ is often used interchangeably with ‘polygon’ in com-
puter graphics. ‘Facet’ stems from the field of solid modeling, in which many facets
would make up a single face. Despite the more feature-sensitive meaning of the solid
modeling usage, the computer graphics usage of ‘face’ is assumed.
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• The set of edges defining a single face must be a single connected set. Faces
may not have more than one boundary.

In my work to date, I have not constrained faces to be triangles. This may
change. Simple examples have already been found of polyhedra with trian-
gular faces which cannot be unfolded [BDEKOS99] and polyhedra with non-
triangular faces which unfold easily (any of the platonic solids, for example.)

I do require that faces be convex.

A.0.3 Classes of polyhedra

Some interesting subclasses of polyhedra:

• Simplicial polyhedra: Polyhedra whose faces are the minimum degree to not
fall into proper affine subspaces of <d − 1. In <3, the faces of a simplicial
polyhedron are triangles.

• Orthogonal polyhedra: Polyhedra whose faces meet only at right angles.
• Polyhedral bands: Polyhedra bordered by two paths in parallel planes, where

the projection of one path fits entirely within the other.

A.0.4 The Forest for the Trees

Alongside the mathematical entities, several graphs and tree appear through-
out the unfolding problem. Some of these data structures describe the connec-
tivity or associativity of the original or final meshes; other describe possible
manipulations and alternative routes to finding a valid unfolding.

The source connectivity graph of the original mesh is the data structure which
encodes connectivity. Such an encoding is implicit in the concept of a mesh,
but almost any implementation will have to make it explicit. Any unfolding
into a single piece must retain a spanning subset of the source connectivity
graph.

The Cut-tree is the tree of broken edges after unfolding is complete: each node
corresponds to a vertex of the original mesh and each link corresponds to an
edge that has been split. There may be loops in the cut-tree (ex: the torus
at right has one loop around its innermost ring and one loop around a cross-
section of the tube; the sphere has none), so technically the cut-tree is not
actually a tree; it is an undirected graph. But in picturing the cut-tree on
a surface it is often useful to think of it as a branching, spreading, tree-like
pattern. The term cut-tree was first coined in early research in the field, so I
have chosen to retain it.
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The Unfolding tree, AKA the ‘Net’ or ‘Unfolding’, is the tree of joined faces
that results from the unfolding process: each node corresponds to a face of
the original mesh and each link is the dual of an original edge. These nets are
undirected acyclic graphs, subsets of the original connectivity graph.

A quick validity test of an unfolding tree takes two steps. Firstly, any loops
in the graph or any disconnected nodes mean that it’s immediately invalid.
Secondly, the projection of the net down into the plane must never overlap
one polygon atop another; such a conflict invalidates the unfolding.

The MegaTree (AKA ‘Wayne’ in my own work)is the tree of ALL possible
orderings of all possible unfoldings from a fixed root. Each node in Wayne cor-
responds to a face of the source mesh; each edge corresponds to an edge/face
pair, representing the edge across which that face will be added to the unfold-
ing net. Each path from the root of the tree to a leaf node will visit each face
once and thus defines a unique ordering of the generation of a single net.
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B Factoids

B.0.5 Scope of the problem

On a mesh with d edges and n faces, the time to find a valid unfolding is at
most O(dn):

Assume a mesh with one face. It has precisely one unfolding; F(1) = 1

Assume a mesh with n faces. Every face is connected to at most d other faces.
Therefore when the other n-1 faces of the mesh have been unfolded, the nth

face will have d places where it could be attached to the net; F(n) = d * F(n-1)

Thus,

F (n) ∼ O(dn) (B.1)

B.0.6 Enumerating unfoldings

An interesting insight from the implementation of the Iterative Tree Unfolder
is that a unique index can be assigned to every unfolding net that could be
derived from a mesh. The ITU builds the index as a more-than-binary integer
by assigning a numerical base to each face; the base is the total product of the
number of edges of every face before it in any (arbitrarily-chosen, probably
implementation-dependent) ordered listing of the faces of the mesh. The index
of a net is then the number formed by summing the products of the base of
each face with the index of the edge that connects that face to its parent in
the net graph. For example, unfolding a cube would assign to each of the six
faces the bases 1, 4, 16, 64, 256, 1024; the ITU could then uniquely identify
each net as the sum across all faces of the index of the edge that joined a face
to its parent (a number 0-3) times the base of the face.

(This will also enumerate invalid nets, which do not meet the requirement
that they be unlooping and fully-connected.)

This means that if a remote system already had a copy of the geometry and
ordered connectivity of a mesh, then one could compress the expression of an
unfolding down to an integer of at most n * ceil(log2(d)) bits.

B.0.7 Removing edges reduces unfoldability

Because the set of edges that form the cut-tree is a subset of the set of edges
in the source tree, cutting any edges of a surface before the unfolding process
begins can only reduce its unfoldability.
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For example, consider the spun parabola test model, which can only be un-
folded in a spiraling strip. If one were to break two vertical edges parallel
to one another on the same horizontal row of the model, the strip would be
broken and the model would be un-unfoldable.

B.0.8 The genus of the source shape is not tied precisely to the genus of the
cut-tree

While intuitively one would expect there to be a relationship between the
genus of a surface and the loop count of its cut-trees, this is pretty easily
disproved. A sphere’s cut-tree can have no loops; a torus’ cut-tree will generally
have two, and a simple deformation of the torus–chopping off the bottom half
and closing the open face, giving a model which is still topologically a torus
but looks more like the top of a donut–will have only one.

B.0.9 The necessity of cutting vertices with negative curvature

A single vertex whose curvature is negative must lie on at least *two* edges
in the cut-tree. This is because if it were only on one, i.e., only one of its
connecting edges were cut, then all of its neighboring ring of faces would
continue to share it as a vertex. If their curvature is negative then the sum of
the angles of each of the neighbor faces at the vertex would be greater than
2pi and in flattening, two of the faces would necessarily interpenetrate.

B.0.10 Ordering doesn’t really matter

The order in which an unfolding is constructed is irrelevant to the ultimate
validity of the unfolding. This is because the validity test, which tests for con-
nectivity and interpenetrating faces, can be implemented in a manner which
can be run once on the entire set of unfolded faces without relying on any
inherent ordering. The existence of such an implementation shows that order
is irrelevant.

That said, many implementations of solutions to the Unfolding Problem are
implementations which internally *do* rely on order. That said, even among
such implementations there are almost always independent paths and sub-
branches of the cut-tree which could be visited in any order.

B.0.11 Starting face doesn’t matter

One might be tempted to believe that an unfolding which was built by be-
ginning at one face must perforce be different from any unfolding that was
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built beginning somewhere else. But the connectivity of an unfolding forms
an undirected acyclic graph (i.e. a tree) in which the edges of the new graph
are a subset of the shared edges of the original mesh. And any two undirected
acyclic graphs which are topologically identical, even if they’re drawn on pa-
per (or in a software implementation) with different roots, really are identical.
So two unfoldings that retain precisely the same sets of unbroken edges from
the original mesh, no matter what order they were generated in, will produce
the same unfolding and thus can be tested for validity with the same test.
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C A few words about Implementation

C.1 Implementing a Mesh in software - the YAMM classes

From the geometric definition it is possible to derive a concrete software im-
plementation of a polyhedral mesh. This implementation will be called a Poly-
Mesh. A PolyMesh will contain a list of Poly’s, which will represent the faces
of the polyhedron; these in turn will access a list of Vertex’s, which represent
the endpoints of edges on a single face.

To distinguish between geometric forms and their software implementations,
the term ‘polyhedron’ (the mathematical entity) and the terms ‘mesh’, ‘face’
and ‘vertex’ (the geometric forms) will never be capitalized. The capitalized
names ‘PolyMesh’, ‘Poly’ and ‘Vertex’ are reserved for implementations. Bear-
ing this distinction in mind, the terms for each will be used interchangeably
except where the distinction is actually pertinent to the discussion at hand.

The PolyMesh, Poly and Vertex class, regardless of implementation specifics,
may be defined by the queries which they can support:

• Ability to iterate over the faces of the PolyMesh. Order is not imposed or
implied but the iteration mechanism must traverse each Poly precisely once.

• Ability to iterate over the vertices of a single face of a PolyMesh. Although
any iteration implies a ‘starting’ vertex, no special relevance is assigned to
that position and vertex lists in a face should be seen as a closed loop, modu-
lus index. The order is given to allow algorithms to iterate over neighboring
vertices.

• Ability to iterate over the polygons sharing a vertex, in a counterclockwise
order rotating around the surface normal at the vertex. The order is given
to allow algorithms to iterate over neighboring polygons.

• Ability to query for the Poly that shares an edge with another Poly.

A strong restriction imposed on the Poly class is that its vertices must all be
coplanar. (This is in support of a key rule of the geometric form, that every
face must be flat.) Since this may not always be possible, it may be necessary
to include a triangulating routine in the data entry stage, so that a Poly whose
vertices lie too far off a plane can be split into multiple triangles. This raises
the larger question of data entry in general: many forms of data entry generate
complex meshes which do not necessarily conform to the polyhedral definition
given here. It is tempting to wave ones hands and lay the burden of data
conversion at the feet of the user, and in a purely mathematical discussion of
the problem it is acceptable to do so. In any software implementation it will
probably be necessary to internally ensure the consistency of the data.
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Unfortunately, floating point drift remains the bugbear of any scheme which
moves polygons around and transforms them. Mechanisms will be suggested
throughout the implementation which try to minimize the impact of floating
point error, but this must be recognized a priori as a source of potential
difficulty.

It is also worth noting that any implementation of the generation of an un-
folding will create new Vertex instances, as vertex sharing is no longer possible
when two faces are separated and unfolded to different parts of the plane. In
other words, while the number of faces will remain constant, the number of
edges and vertices will grow.

C.2 Supporting Algorithms

C.2.1 Finding the shortest path on a polygonal surface

Several of my unfolding approaches rely on the concept of a shortest path,
where path length is in some manner a summation of a local attribute of the
surface (geometric distance; edges crossed; positive curvature.) I have found a
number of sources which detail excellent shortest-path solutions. Having found
them, I have decided not to use them: Djikstra wrote a very, very simple O(n3)
shortest-path algorithm in 1967 and I plan to use it. I’ll take it as writ that
anybody bringing this research to industry would replace the shortest-path
finder (and all the other algorithms not directly tied to unfolding, like convex
hulls and some of the accelerations available to calculating discrete curvature)
with something more efficient. In my timing calculations, I will treat all of
these sub-algorithms as black boxes running in unknown time.

C.2.2 Testing for inter-polygon intersections in the plane

I use a quadtree data structure to detect interpenetrating polygons during the
unfolding process. I believe that the time to evaluate a single intersection is
no more than log(n) to identify the quadtree boxes that contain a face and
then a quick short list loop to check for overlap.

C.2.3 Convex hull in 2D

I maintain a 2D convex hull for some of the unfolders. Adding a vertex to the
hull is a quick operation: the vertex’s position in the ordered list of vertices
(sorted by compass angle) is a quick O(n) search, then it’s just simple maths
and a little searching to determine whether to extend the hull or not. Konrad
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PolthierKlaus Hildebrandt I met Polthier, and then Hildebrandt, for an after-
noon in Berlin. I demo’d my software and they showed me theirs. Their stuff
wasn’t geared towards unfolding, it was just a side note added feature; they
would split the model up into a ‘reasonable’ number of separated pieces, and
then at the user’s discretion could try to merge the separated bits.

We talked about using curvature to guide calculations. Polthier agreed that
my idea of starting cutting at the negative curvature points was a good one.
He also suggested that perhaps broad intersections could be avoided by testing
for inter-gore intersections right up front [which brings to mind the thought
that perhaps if my approach emphasises gore generation (as opposed to long
spirals) then I can actually identify and optimise for interesections between
them by making them real entities in the code?] by *integrating curvature
along the paths of the gores* and seeing if it exceeded that of a closed circle.
Something along those lines. Lubya Alboul –need to fill this entry in–
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